Software and Systems Modeling (2024) 23:525-526
https://doi.org/10.1007/s10270-024-01190-0

EDITORIAL

f')

Check for
updates

Model modularity for reuse, libraries and composition: symbol

management is key
Benoit Combemale’ - Jeff Gray? - Bernhard Rumpe?

Published online: 27 June 2024
© The Author(s) 2024

It is insightful to observe the similarities between the ways
that programs are decomposed into sets of individual and
reusable artifacts and the corresponding ways that models are
(or should be?) defined. Modularity and encapsulation were
introduced in the earlier work on Algebraic Datatypes and
then Parnas pointed out the important mechanism of mod-
ularity with his famous paper about “On the Criteria to be
Used in Decomposing Systems into Modules.” Dijkstra also
discussed modularity by popularizing the term “Separation
of Concerns.” Most modern programming languages provide
mechanisms for modularity and developers use the concepts
of class, module, and assembly in their general programming
repertoire. It is a core principle that the internal realization of
implementation detail is secretly encapsulated and can only
be accessed by an explicitly defined and exported interface.
This interface is defined by definitive programming elements,
which are given a human-readable name, such as class name
“Person” or method name “getAge()”.

Modularity has several benefits, according to Parnas,
including:

e When the underlying secret is changed, an implementa-
tion can be exchanged and evolved without the need to
modify the dependent code because the defined interface
remains untouched. This supports software changeability
while minimizing global impacts across the code base.

e Code can be developed independently within the same
project, which supports parallel development by a team of
software engineers. This also supports the integration and

B<I Bernhard Rumpe
bernhard.rumpe @sosym.org

Benoit Combemale
benoit.combemale @sosym.org

Jeff Gray

jeff.gray @sosym.org

University of Rennes, Rennes, France

2 University of Alabama, Tuscaloosa, AL, USA

3 RWTH Aachen University, Aachen, Germany

reuse of external and open-source libraries. Since Mcll-
roy’s paper on reusability in the late 1960s, the general
reusability of library code and frameworks has greatly
increased programmer efficiency.

e Modularity also helps with the comprehensibility of the
program code by allowing each module to be reasoned
about locally without a deep need to understand all of the
inner details of other parts of a project.

On the contrary, modern modeling languages and their
tools do not natively provide a deep collection of reusable
libraries. One key problem is the lack of well-understood,
encapsulating interfaces of the defined models. So far models
have often been used to describe the interface of an under-
lying component, but the concept that a model itself has an
interface and an encapsulated “body” is still unfamiliar. Only
a few works from the community promote this idea, such as
the concept of symbol tables for models, potentially aggre-
gated to a model type or requirement model. This idea also
has been further explored with different levels of interfaces,
such as the interfaces for variability, customization, and use
(VCU).

Moreover, the availability of interfaces on models means
that there must exist an efficient management of symbols.
Regarding symbols, we mean named elements that model-
ers define inside a model that are allowed to be referenced
from outside, using the defined name and signature (as pro-
vided by symbol tables, model types, or requirement models).
This includes classes, states, activities, pins, ports, methods,
attributes, variables, and many more potential kinds of sym-
bols.

Symbols are a well elaborated concept in programming
languages (e.g., symbol tables explicitly store symbols in
separate or joint artifacts). But symbol management is often
absent in modeling languages and thus not very well accom-
modated in most tools. Most modern UML and SysML tools
do not manage symbols explicitly, but store an integrated
large model, where elements are directly connected, even
though models provide explicitly defined names for their

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01190-0&domain=pdf

526

B. Combemale et al.

elements. Integrated storage is a successful database man-
agement technology, but it is not clear how well the concept
fits modeling languages, where decoupling, encapsulation,
parallel development, and independent reuse play a major
role. To our knowledge, there are very few programming lan-
guages that use database technology to store their artifacts

(and developers often find such an approach unsatisfying).

Instead, source code is stored in individual artifacts and only

connected through explicit symbols, typically imported from

other artifacts. Modeling languages are also complicated data
structures, and thus database technologies are not necessarily
the optimal solution.

As an alternative, an approach where artifacts are indi-
vidually stored, managed by a version control system and
connected through explicit use of symbols in the interfaces
of the models, could be a more promising approach to support
the reuse of individual models and libraries of well-defined
models. Such an alternative approach, however, may com-
prise two relevant aspects:

1. The notion of a model’s “interface” has to be made more
explicit in the modeling languages. Although not com-
pletely independent, a model’s interface is not to be
confused with the interface of the system components
that are described by the model. There are (sometimes
subtle) differences.

2. The notion of “symbol” is the core constituent of what
makes an interface. Symbols have a name and need
an explicit type system (relatively well-known in pro-
gramming languages). As exemplified above, there are
language-specific kinds of symbols that are not present
in programming languages. For example, a UML class
diagram defines multiple kinds of symbols, namely (a)
class names (including interfaces), (b) attribute names,
(c) method names, (d) stereotype names, (e) association
names, (f) role names, (g) enum constants, (h) package
symbols, and finally (i) the diagram name itself. Some
of those names are directly mapped to the same symbol
in the program code, while other symbols of the abstract
model map to other symbols in the implementation (e.g.,
an attribute’s get/set access methods). Other kinds of
symbols also have to be mapped, because there is no cor-
responding programming symbol (e.g., association, role,
and diagram names).

The mapping is also not unique. For example, a state sym-
bol in a StateChart may become (a) an enumeration constant ,

@ Springer

(b) a class in the state pattern, or (c) not visible at all, because
the decision was to encapsulate states within the modeled
software component. Symbols also contain additional infor-
mation, such as method signature, typing, and visibility. To
achieve modularity and compositionality in a practically use-
ful form, a better theory on symbols, symbol management,
and the exchange of symbols through models seems to be
necessary. The software and systems modeling community
has undertaken considerable steps in this direction, and we
know it is not easy, but we think that smart interface manage-
ment is a highly relevant and widely undervalued technology
in modeling language design.

Finally, our plea to the SoSyM community is to look
more deeply into the mechanisms of composing respec-
tively decomposing models into individual, reusable artifacts
with a crisp boundary and the possibility to explicitly access
exposed parts of the models through interfaces. Our modeling
approaches need interfaces that are explicitly constituted by
named symbols of various appropriate kinds, such that mod-
els can be composed and integrated, but also packaged and
evolved individually as part of libraries. We strongly believe
this will help to make modeling more successful.

We are interested in receiving submissions and comments
from authors who have been able to expand concepts of mod-
ularity in languages such as SysML, UML and customized
domain-specific languages.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


http://creativecommons.org/licenses/by/4.0/

	Model modularity for reuse, libraries and composition: symbol management is key



