Software and Systems Modeling (2024) 23:267-268
https://doi.org/10.1007/s10270-024-01172-2

EDITORIAL

f')

Check for
updates

Model-based code generation works: But how far does it

go?—on the role of the generator
Benoit Combemale’ - Jeff Gray? - Bernhard Rumpe3

Published online: 8 April 2024
© The Author(s) 2024

There are many published examples of successful indus-
trial projects that used code generation from abstract models.
However, it seems that the actual use of code generation from
explicitly defined models written in modeling languages
(e.g., UML, SysML, or a domain-specific language) has not
been as successful and widespread as possible.

Why is that so? Unfortunately, there are too few in-depth
examinations of the problems and challenges that actually
prohibit the widespread adoption of model-based code gener-
ation. It would be very instructive for the SoSyM community
to have deeper insights into these challenges so that we could
improve the current state-of-the-art.

However, there are a number of experiences commonly
used as counterarguments. Some of them are:

1. The developers’ ability to model in abstract form is not as
widespread as it should be. In particular, for developers,
it may be easier to think in a linear procedural way, than
in an abstract specification.

2. The tooling is not as comfortable and robust as it should
be, in particular when developers rely on graphical repre-
sentations of diagrams that have to be arranged into new
layout regularly when changes occur.

3. The generation of code has to react flexibly to the input
model, framework APIs, operating system, and other ele-
ments of the software stack, which are regularly updated
and thus enforce the generator’s adaptations.

4. The benefit of modeling is limited if tool support for
defining the abstraction levels in a model is weak.

B<I Bernhard Rumpe
bernhard.rumpe @sosym.org

Benoit Combemale
benoit.combemale @sosym.org

Jeff Gray

jeff.gray @sosym.org

University of Rennes, Rennes, France

2 University of Alabama, Tuscaloosa, AL, USA
RWTH Aachen University, Aachen, Germany

Although these arguments are related, argument (1) is a
teaching problem and (2) is a tool vendor issue. Argument
(3) obviously needs to be mitigated by a flexible modu-
lar approach when defining or adapting a generator. That
means not only the models and the resulting code should be
organized in a modular way but also the generator. Further-
more, the generator should be easily and flexibly adaptable.
Argument (4) is an interesting one and comes from dumb
code generators. For example, given a class diagram with a
class “Person” and an attribute “age”, the diagram is directly
mapped to a corresponding implementation class plus the
attribute. A minimal extension would be access control to
attributes through getter and setter methods. But we can do
better!

1 What if the generator was smart?

There would be improved value if a generator could also
create a factory or builder, the data table definition for the
database, and the DAO to load and store objects. Addition-
ally, it would be helpful to have support for web pages for
visualizing or editing single objects, creating new objects,
and for lists of available objects. Model-based smart gen-
erators can generate data transportation code in different
languages (e.g., allowing a Typescript webapp or a Python
data crunching algorithm to communicate with a Java back-
end in a secured way) and could also govern the access,
privacy, and transaction policies.

A smart generator knows that an attribute called “temper-
ature” has a different visualization than an attribute called
“interestRate”. Such domain-specific intelligence in a gen-
erator must be extensible for various new domain-specific
solutions, e.g., in the finance, retail, research, manufacturing,
medicine, government, or e-home domains, where individ-
ual forms of presentations have been created already before
digitalization started.

A smart generator might also automatically include a log
to understand recent changes in the data or a difference

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01172-2&domain=pdf

268

B. Combemale et al.

mechanism when users would like to know what happened
since the last day/week/month. It might automatically add
an appropriate undo/redo mechanism. And a smart generator
automatically creates the user interface for a representation
of these logs, an offering of filters on these logs, undo/redo-
buttons, an activity report, an email notification mechanism,
etc.

And additionally it could generate sets of possible test
data as well as dummies, respectively, mocks for tests. It
could also generate automatically specific search functional-
ity including the appropriate webpages showing the search
results. And maybe the search is itself smart, knowing how
to handle specific forms of data types, such as temperatures
or interest rates?

It could generate APIs for secure REST and MQTT access
itself based on a generated JSON or XML dialect on the
server side to communicate with other systems. It could orga-
nize the overall system in forms of micro-services and many
more possible architectural issues.

Of course, for data-intensive or highly optimized
algorithmic-based applications, the generated code is not
necessarily fit enough to meet all non-functional require-
ments. That either would mean that the generator must be
adaptable (for one more reason than only described above)
or the generated code must be adaptable, i.e., the generated
code should be organized as a framework itself, where unused
things can be left out and many other things can be adapted
in various forms.

We do not have that currently—although it seems feasible.
One important side condition would be that it may not be a
1-shot only generation, but must be repeatable in an agile iter-
ative development process, where the generated code actually
is not touched at all but only programmed against—like in
a framework. And like in a framework many default design
decisions are embedded in the generation tool and in the
runtime-part of the generator, which reduces the design time,
but might also narrow usage of a generator to certain domains
or kinds of software.

Class diagrams have a special role in modeling languages,
because they define the structural backbone of a system
(and SysML IBDs/BDDs do that in a logically distributed
or component-based setting). All other kinds of modeling
languages, such as StateCharts or activity diagrams, are typ-
ically based on that backbone. But from here more interesting
code can be generated. This includes the state pattern, but
also visualizations in the web presentation, user notifications
(e.g., if certain states have been reached), logs, metrics on the
durations of actions, etc. Behavioral descriptions can gener-
ally be understood as special forms of descriptions of code
behavior, but also as process descriptions to guide the inter-
action between the software and the users, which leads to a
lot of generated user-friendly code.

@ Springer

Even logic formulas, such as OCL, which is relatively
close to first-order logic, can be mapped into code. The
straightforward mapping is to check an OCL condition, a
smarter mapping is to generate test data that exercise several
main and corner cases to cover a condition, and a smartest
one is to generate code that establishes a post condition.
However, such a generator needs a kind of smartness which
we know from formal methods and not only smart knowl-
edge about how to represent certain classes, associations and
attributes in a user-friendly way. Theoretical computer sci-
ence has delivered such smartness in the form of solvers
for logical constraints, search strategies, and transformations
of high-level specifications to efficient implementations for
many cases, even though the principal limitation of undecid-
ability will always exist. Currently, it seems that not so many
of these techniques are actually in use, which is a pity. Maybe
a combination of Al techniques for selecting the appropriate
algorithms and these algorithms themselves will lower the
usage barriers.

In summary, a smart generator can actually prevent us
from a lot of coding, allowing developers to become quicker
in developing and smarter in evolving our software. A smart
generator uses smart generation techniques for adaptable
framework-like code and ships with an enhanced runtime-
framework.

There is still much to do, especially for the tool developers
who are actually in charge of building industrial strength
tooling that is more than just “drawing” or “sketching” tools.
Let’s help to adopt the available techniques in industry and
identify the mechanisms needed to do so.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


http://creativecommons.org/licenses/by/4.0/

	Model-based code generation works: But how far does it go?—on the role of the generator
	1 What if the generator was smart?




